Part Number Hot Search : 
D1475 S0500 1N1197 0ZA6T SB252G 7805V 472ML MBM29
Product Description
Full Text Search
 

To Download IRGPC40 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Previous Datasheet
Index
Next Data Sheet
PD - 9.693A
IRGPC40F
INSULATED GATE BIPOLAR TRANSISTOR
Features
* Switching-loss rating includes all "tail" losses * Optimized for medium operating frequency (1 to 10kHz) See Fig. 1 for Current vs. Frequency curve
G E C
Fast Speed IGBT
VCES = 600V VCE(sat) 2.0V
@VGE = 15V, IC = 27A
n-channel
Description
Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications.
TO-247AC
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C ICM ILM VGE EARV PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw.
Max.
600 49 27 200 200 20 15 160 65 -55 to +150 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1N*m)
Units
V A
V mJ W
C
Thermal Resistance
Parameter
RJC RCS RJA Wt Junction-to-Case Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight
Min.
-- -- -- --
Typ.
-- 0.24 -- 6 (0.21)
Max.
0.77 -- 40 --
Units
C/W g (oz)
Revision 0
C-81
To Order
Previous Datasheet
Index
Next Data Sheet
IRGPC40F
Electrical Characteristics @ T = 25C (unless otherwise specified) J
V(BR)CES V(BR)ECS
V(BR)CES/TJ
VCE(on)
Parameter Collector-to-Emitter Breakdown Voltage Emitter-to-Collector Breakdown Voltage Temp. Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage
VGE(th) VGE(th)/TJ gfe ICES IGES
Gate Threshold Voltage Temp. Coeff. of Threshold Voltage Forward Transconductance Zero Gate Voltage Collector Current Gate-to-Emitter Leakage Current
Min. Typ. Max. Units Conditions 600 -- -- V VGE = 0V, IC = 250A 20 -- -- V VGE = 0V, IC = 1.0A -- 0.70 -- V/C VGE = 0V, IC = 1.0mA -- 1.7 2.0 IC = 27A VGE = 15V -- 2.2 -- V IC = 49A See Fig. 2, 5 -- 1.9 -- IC = 27A, T J = 150C 3.0 -- 5.5 VCE = VGE, IC = 250A -- -12 -- mV/C VCE = VGE, IC = 250A 9.2 12 -- S VCE = 100V, IC = 27A -- -- 250 A VGE = 0V, VCE = 600V -- -- 1000 VGE = 0V, VCE = 600V, T J = 150C -- -- 100 nA VGE = 20V
Switching Characteristics @ T = 25C (unless otherwise specified) J
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. Max. Units Conditions 59 80 IC = 27A 8.6 10 nC VCC = 400V See Fig. 8 25 42 VGE = 15V 25 -- TJ = 25C 37 -- ns IC = 27A, VCC = 480V 240 410 VGE = 15V, RG = 10 230 420 Energy losses include "tail" 0.65 -- 3.0 -- mJ See Fig. 9, 10, 11, 14 3.65 6.0 28 -- TJ = 150C, 37 -- ns IC = 27A, VCC = 480V 380 -- VGE = 15V, RG = 10 460 -- Energy losses include "tail" 6.0 -- mJ See Fig. 10, 14 13 -- nH Measured 5mm from package 1500 -- VGE = 0V 190 -- pF VCC = 30V See Fig. 7 20 -- = 1.0MHz
Notes: Repetitive rating; V GE=20V, pulse width limited by max. junction temperature. ( See fig. 13b ) VCC=80%(VCES), VGE=20V, L=10H, RG= 10, ( See fig. 13a ) Repetitive rating; pulse width limited by maximum junction temperature. Pulse width 80s; duty factor 0.1%. Pulse width 5.0s, single shot.
C-82
To Order
Previous Datasheet
Index
Next Data Sheet
IRGPC40F
60
For both:
Triangular w ave:
LO A D CU R R E N T (A )
D uty c y cle: 50% TJ = 125C T s in k = 90C G ate drive as s pecified Pow er D issipation = 35W
40
Sq uare w ave: 60% of rated v oltage
C lam p voltage: 80% of rated
20
Id e a l d io d e s
0 0.1 1 10 100
f, F re quency (kH z)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
1000
1000
I C , Collector-to-E m itter C urrent (A)
IC , Collector-to-E m itter C urrent (A )
100
TJ = 25 C
100
T J = 15 0C
10
TJ = 15 0 C
T J = 2 5C
1
10
0.1
1 0.1 1
V G E = 1 5V 2 0 s P U LS E W IDTH
10
0.01 5 10
V C C = 10 0 V 5 s P U L S E W ID TH
15 20
V C E , C ollector-to-E m itter V oltage (V )
V G E , G ate-to -E m itter V o lta ge (V )
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
C-83
To Order
Previous Datasheet
Index
Next Data Sheet
IRGPC40F
50
V G E = 1 5V
3.0
VG E = 1 5 V 80 s P UL S E W ID TH I C = 54 A
40
V C E , C ollector-to-E m itter V oltage (V)
M axim um D C C ollector C urrent (A )
2.5
30
2.0
I C = 27 A
20
1.5
10
I C = 1 4A
0 25 50 75 100 125 150
1.0 -60 -40 -20 0 20 40 60 80 1 00 120 140 160
T C , C ase Tem perature (C )
TC , C ase Tem perature (C )
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature
1
T herm al Response (Z th JC )
D = 0 .5 0
0.2 0
0.1
0.1 0 0 .05 SIN G LE P UL SE (TH ER MA L R E SP O NS E )
N o te s: 1 . D u ty fa c to r D = t 1 /t 2
PD M
t
1 t2
0.0 2 0.0 1
0.01 0.00001
2 . P e a k TJ = P D M x Z thJ C + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , R ectangular Pulse D uration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
C-84
To Order
Previous Datasheet
Index
Next Data Sheet
IRGPC40F
3000
2500
2000
Cies
1500
Coes
V G E , G ate-to-E m itter V oltage (V)
1 00
V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc
20
V C E = 4 00 V I C = 27A
16
C , C apacitance (pF)
12
8
1000
500
Cres
4
0 1 10
0 0 10 20 30 40 50 60
V C E , C ollector-to-E m itter V oltage (V)
Q g , Total G ate C harge (nC )
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
4 .8
Total S w itching Losses (m J)
4 .7
To ta l S w itc hing Lo ss es (m J)
VC C VG E TC IC
= 4 80 V = 15 V = 25C = 2 7A
100
R G = 10 V GE = 1 5V V CC = 48 0V
4 .6
I C = 5 4A
10
I C = 2 7A
4 .5
I C = 14 A
4 .4
4 .3 0 10 20 30 40 50 60
1 -60 -40 -20 0 20 40 60 80 100 120 140 160
R G , G ate R es istance ( )
W
TC , C ase Tem perature (C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Case Temperature
C-85
To Order
Previous Datasheet
Index
Next Data Sheet
IRGPC40F
20
16
I C , C ollecto r-to -E m itter C u rrent (A )
Total Sw itching Losses (m J)
RG TC V CC VGE
= 10 = 150 C = 4 80 V = 15 V
1000
VG E E 2 0V G= T J = 125 C
100
12
S A FE O P E RA TIN G A RE A
8
10
4
0 0 20 40 60
1 1 10 100 1000
I C , C o llector-to -E m itte r Current (A )
V C E , Collecto r-to-E m itter V oltage (V )
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Refer to Section D for the following: Appendix C: Section D - page D-5 Fig. 13a - Clamped Inductive Load Test Circuit Fig. 13b - Pulsed Collector Current Test Circuit Fig. 14a - Switching Loss Test Circuit Fig. 14b - Switching Loss Waveform Package Outline 3 - JEDEC Outline TO-247AC (TO-3P) Section D - page D-13
C-86
To Order


▲Up To Search▲   

 
Price & Availability of IRGPC40

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X